Abstract

1. Excitatory postsynaptic currents (EPSCs) were evoked at synapses formed by Schaffer collaterals/commissural (CA3) axons with CA1 pyramidal cells using the rat hippocampal slice preparation. Long-term potentiation (LTP) was induced at these synapses using a pairing protocol, with 50 microM d,l-APV present in the artificial cerebrospinal fluid (ACSF). 2. Quantal analysis of the amplitudes of the control and conditioned EPSCs showed that the enhancement of synaptic strength was due entirely to an increase in quantal content of the EPSC. No change occurred in the quantal current. 3. These results were compared with those obtained from a previous quantal analysis of LTP induced in normal ACSF, where both quantal current and quantal content increased. The results suggest that calcium entering via NMDA receptors initiates the signalling cascade that results in enhanced AMPA currents because it is adding to cytoplasmic calcium from other sources to reach a threshold for this signalling pathway, or because calcium entering via NMDA receptors specifically activates this signalling pathway.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.