Abstract

Nitrosamines have been identified as a probable human carcinogen and thus are of high concern in many manufacturing industries and various matrices (for example pharmaceutical, cosmetic and food products, workplace air or potable- and wastewater). This study aims to analyse nine nitrosamines relevant in the field of occupational safety using a gas chromatography-drift tube ion mobility spectrometry (GC-DT-IMS) system. To do this, single nitrosamine standards as well as a standard mix, each at 0.1 g/L, were introduced via liquid injection. A GC-DT-IMS method capable of separating the nitrosamine signals according to retention time (first dimension) and drift time (second dimension) in 10 min was developed. The system shows excellent selectivity as each nitrosamine gives two signals pertaining to monomer and dimer in the second dimension. For the first time, reduced ion mobility values for nitrosamines were determined, ranging from 1.18 to 2.03 cm2s−1V−1. The high selectivity of the GC-DT-IMS method could provide a definite advantage for monitoring nitrosamines in different manufacturing industries and consumer products.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.