Abstract
<span lang="EN-US">Predicting equities market trends is one of the most challenging tasks for market participants. This study aims to apply machine learning algorithms to aid in accurate Nifty 50 index trend predictions. The paper compares and contrasts four forecasting methods: artificial neural networks (ANN), support vector machines (SVM), naive bayes (NB), and random forest (RF). In this study, the eight technical indicators are used, and then the deterministic trend layer is used to translate the indications into trend signals. The principal component analysis (PCA) method is then applied to this deterministic trend signal. This study's main influence is using the PCA technique to find the essential components from multiple technical indicators affecting stock prices to reduce data dimensionality and improve model performance. As a result, a PCA-machine learning (ML) hybrid forecasting model was proposed. The experimental findings suggest that the technical factors are signified as trend signals and that the PCA approach combined with ML models outperforms the comparative models in prediction performance. Utilizing the first three principal components (percentage of explained variance=80%), experiments on the Nifty 50 index show that support vector classifer (SVC) with radial basis function (RBF) kernel achieves good accuracy of (0.9968) and F1-score (0.9969), and the RF model achieves an accuracy of (0.9969) and F1-Score (0.9968). In area under the curve (AUC) performance, SVC (RBF and Linear kernels) and RF have AUC scores of 1.</span>
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Electrical and Computer Engineering (IJECE)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.