Abstract

Predicting electricity consumption is notably essential to provide a better management decision and company strategy. This study presents a hybrid machine learning model by integrating dimensionality reduction and feature selection algorithms with a backpropagation neural network (BPNN) to predict electricity consumption in Thailand. The predictive models are developed and tested using an actual dataset with related predictor variables from public sources. An open geospatial data gathered from a real service as well as geographical, climatic, industrial, household information are used to train, evaluate, and validate these models. Machine learning methods such as principal component analysis (PCA), stepwise regression (SWR), and random forest (RF) are used to determine the significant predictor variables. The predictive models are constructed using the BPNN with all available variables as baseline for comparison and selected variables from dimensionality reduction and feature selection methods. Along with creating a predictive model, the most related predictors of energy consumption are also selected. From the comparison, the hybrid model of RF with BPNN consistently outperforms the other models. Thus, the proposed hybrid machine learning model presented from this study can predict electricity consumption for planning and managing the energy demand.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.