Abstract

Eighty Listeria monocytogenes isolates were obtained from Chinese retail ready-to-eat (RTE) food and were previously characterized with serotyping and antibiotic susceptibility tests. The aim of this study was to characterize the subtype and virulence potential of these L. monocytogenes isolates by multilocus sequence typing (MLST), virulence-associate genes, epidemic clones (ECs), and sequence analysis of the important virulence factor: internalin A (inlA). The result of MLST revealed that these L. monocytogenes isolates belonged to 14 different sequence types (STs). With the exception of four new STs (ST804, ST805, ST806, and ST807), all other STs observed in this study have been associated with human listeriosis and outbreaks to varying extents. Six virulence-associate genes (inlA, inlB, inlC, inlJ, hly, and llsX) were selected and their presence was investigated using PCR. All strains carried inlA, inlB, inlC, inlJ, and hly, whereas 38.8% (31/80) of strains harbored the listeriolysin S genes (llsX). A multiplex PCR assay was used to evaluate the presence of markers specific to epidemic clones of L. monocytogenes and identified 26.3% (21/80) of ECI in the 4b-4d-4e strains. Further study of inlA sequencing revealed that most strains contained the full-length InlA required for host cell invasion, whereas three mutations lead to premature stop codons (PMSC) within a novel PMSCs at position 326 (GAA → TAA). MLST and inlA sequence analysis results were concordant, and different virulence potentials within isolates were observed. These findings suggest that L. monocytogenes isolates from RTE food in China could be virulent and be capable of causing human illness. Furthermore, the STs and virulence profiles of L. monocytogenes isolates have significant implications for epidemiological and public health studies of this pathogen.

Highlights

  • Listeria monocytogenes is a gram-positive, facultative intracellular bacterium that is responsible for listeriosis

  • multilocus sequence typing (MLST) detected a total of 14 different sequence types in the 80 isolates, including four new STs (ST804, ST805, ST806, and ST807) (Table 2)

  • It should be noted that the multidrug resistant strains 1194-4LM, 1330-2LM, and 1342-1LM were belonged to new STs (ST805, ST806) indicating that these isolates were genetically diverse from other isolates

Read more

Summary

Introduction

Listeria monocytogenes is a gram-positive, facultative intracellular bacterium that is responsible for listeriosis. Listeriosis can cause meningitis, newborn septicemia, encephalomyelitis, or even death in humans, especially in the elderly, pregnant women, or newborn. Every year, ∼1591 cases of listeriosis in humans are report, with a 19% case-fatality rate in the United States (Scallan et al, 2011). In the European Union, a total of 1763 confirmed human cases of listeriosis (notification rate of 0.44 cases per 100,000 population) were reported in 2013 (EFSA, 2015). As an important foodborne pathogen, it is widespread in nature and lives naturally in plants and soil environments. Its ability to survive and grow over a wide range of environmental conditions, including refrigeration temperatures, high salt concentration and low pH, makes it a potential hazard in foods (Ryser and Marth, 2007)

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call