Abstract

Abstract Farm products are considered important vehicles for the transmission of Listeria monocytogenes (L. monocytogenes). The typing of L. monocytogenes from farm products contributes to the surveillance and source tracing of the pathogen. In this study, 77 L. monocytogenes strains from seven farm product categories in Shanghai were analyzed by serological typing, multilocus sequence typing (MLST), pulsed-field gel electrophoresis (PFGE), and whole-genome nucleotide polymorphism (wgSNP). The results showed that the 77 isolates were classified into four serovars (1/2a, 1/2c, 1/2b, and 4b), and of these, 1/2a (n=47) was the most prevalent. Seventeen sequence types (STs) were generated by MLST with two novel STs (ST1402 and ST1403), and 20 of 77 L. monocytogenes isolates had high genetic identity with previously documented outbreak isolates according to the minimum spanning tree from the MLST results. Moreover, 34 PFGE patterns (PF1–PF34) were differentiated, and based on a similarity value higher than 80% by the unweighted pair group method dendrogram, the discriminatory index was relatively low (equal to 0.775). Furthermore, 14 isolates were chosen and further analyzed by wgSNP based on the previous typing results, which demonstrated that wgSNP and MLST yielded mostly consistent typing results but higher resolution than PFGE. In conclusion, 77 L. monocytogenes isolates from farm products collected in nine districts in Shanghai were highly genetically diverse, and 20 of these isolates had high relatedness with previously documented outbreak strains worldwide. The results indicate a possible cross-contamination risk of L. monocytogenes and a potential public health concern resulting from farm products during the supply chain in Shanghai, China.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call