Abstract

IntroductionIn a five-arm randomized clinical trial (RCT) with stratified randomization across 54 sites, we encountered low primary outcome event proportions, resulting in multiple sites with zero events either overall or in one or more study arms. In this paper, we systematically evaluated different statistical methods of accounting for center in settings with low outcome event proportions.MethodsWe conducted a simulation study and a reanalysis of a completed RCT to compare five popular methods of estimating an odds ratio for multicenter trials with stratified randomization by center: (i) no center adjustment, (ii) random intercept model, (iii) Mantel–Haenszel model, (iv) generalized estimating equation (GEE) with an exchangeable correlation structure, and (v) GEE with small sample correction (GEE-small sample correction). We varied the number of total participants (200, 500, 1000, 5000), number of centers (5, 50, 100), control group outcome percentage (2%, 5%, 10%), true odds ratio (1, > 1), intra-class correlation coefficient (ICC) (0.025, 0.075), and distribution of participants across the centers (balanced, skewed).ResultsMantel–Haenszel methods generally performed poorly in terms of power and bias and led to the exclusion of participants from the analysis because some centers had no events. Failure to account for center in the analysis generally led to lower power and type I error rates than other methods, particularly with ICC = 0.075. GEE had an inflated type I error rate except in some settings with a large number of centers. GEE-small sample correction maintained the type I error rate at the nominal level but suffered from reduced power and convergence issues in some settings when the number of centers was small. Random intercept models generally performed well in most scenarios, except with a low event rate (i.e., 2% scenario) and small total sample size (n ≤ 500), when all methods had issues.DiscussionRandom intercept models generally performed best across most scenarios. GEE-small sample correction performed well when the number of centers was large. We do not recommend the use of Mantel–Haenszel, GEE, or models that do not account for center. When the expected event rate is low, we suggest that the statistical analysis plan specify an alternative method in the case of non-convergence of the primary method.

Highlights

  • In a five-arm randomized clinical trial (RCT) with stratified randomization across 54 sites, we encountered low primary outcome event proportions, resulting in multiple sites with zero events either overall or in one or more study arms

  • The variance of the treatment effect estimate is influenced by the intra-class correlation coefficient (ICC), which indicates the similarity of outcomes of participants within a cluster relative to those in other clusters

  • We focused on five popular methods of analysis: (i) no center adjustment, (ii) random intercept for center (RE), (iii) Mantel–Haenszel model, (iv) generalized estimating equation (GEE), and (v) GEE-small sample correction

Read more

Summary

Introduction

In a five-arm randomized clinical trial (RCT) with stratified randomization across 54 sites, we encountered low primary outcome event proportions, resulting in multiple sites with zero events either overall or in one or more study arms. We systematically evaluated different statistical methods of accounting for center in settings with low outcome event proportions. Multicenter randomized clinical trials (RCTs) that enroll participants from multiple settings (e.g., countries, hospitals, clinics, or villages; hereafter “centers”) are increasingly common in contemporary health and social sciences research. This is primarily because they hasten and increase total recruitment while promoting the generalizability of trial results. If the stratification factors are not accounted for, the resulting standard errors (SEs) of the treatment effect estimate can be biased upwards, leading to p values that are too large and confidence intervals (CIs) that are too wide, effectively reducing statistical power

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.