Abstract

Abstract The modulational instability (MI) in monomode optical fibres with fifth-order nonlinearity, fibre loss, higher-order dispersion, and the temporal variation of third-order nonlinearity is studied theoretically. The conditions for the existence of the MI and the maximal modulational growth are given and discussed in detail. The results obtained show that the key factor dominating the producing condition of the MI is the power P of the continuous wave initially launched into the optical fibres. If P falls into 3/10<P/P 0 <1/2 where P 0 is defined as characteristic power, the MI can be produced in the range of not only anomalous group velocity dispersion but also the normal in which the final evolution state of the modulated wave is dark soliton.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.