Abstract

AbstractVehicle-to-vehicle or V2V communication, a progressively developing technology that uses IEEE 802.11 p-based systems to enable vehicular communication over a few hundreds of meters, is being introduced in numerous vehicle designs to equip them with enhanced sensing capabilities. However, it can be subjected to a lot of interference due to sensitivity that can cause potential channel congestion issues. V2V can be complemented using visible light communication (VLC), an alternative technology that uses light emitting diodes (LEDs), headlights or tail lights to function as transmitters, whereas the photodiodes or cameras function as receivers. Although, in real-time applications, a V2V-VLC cannot be demonstrated due to unreliability. In this paper, the overall performance of the vehicle-to-vehicle communication is being implemented using orthogonal frequency division multiplexing (OFDM) in combination with amplitude shift keying (ASK), also termed as on–off keying (OOK) modulation, binary phase shift keying (BPSK) and quadrature phase shift keying (QPSK) digital modulation techniques. All the above-mentioned modulation techniques, i.e., OFDM-OOK, OFDM-BPSK and OFDM-QPSK, are being compared using the following design parameters, i.e., signal to noise ratio (SNR) versus bit error rate (BER) as well as spectral efficiency, in order to choose the best technique for V2V communication. By extensive analysis, in terms of rate and error performances, we have observed that QPSK modulation technique with OFDM performs better when compared to OFDM with OOK and BPSK modulation techniques for V2V communication.KeywordsVehicular communicationVisible light communicationOn–off keyingOrthogonal frequency shift keying

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.