Abstract

We analyze OAM modal crosstalk of a Lommel-Gaussian beam induced by anisotropic oceanic turbulence. The theoretical model is constructed to illustrate the impacts of turbulence and beam parameters on the received crosstalk probability. Turbulence conditions with a larger inner-scale factor, larger anisotropic factor, higher dissipation rate of kinetic energy, lower dissipation rate of the mean-squared temperature, and smaller temperature-salinity contribution ratio usually cause smaller crosstalk. Due to its better immunity to turbulence interference, a Lommel-Gaussian beam with a small asymmetry factor, low OAM quantum number, optimum waist width, and long wavelength in the transmission window is preferable for application. The results are useful to improve OAM communication performances in oceanic turbulence.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.