Abstract
ABSTRACTThe results of monitoring of carbon dioxide (CO2) injection at the Illinois Basin—Decatur Project (IBDP) and the companion Illinois Industrial Carbon Capture and Sequestration Sources (IL-ICCS) project—have shown that reservoir response to fluid pressure changes can vary significantly at different injection locations within the same reservoir. Predrill reservoir characterization is important to identify potentially seismogenic faults. However, interpretations of newly reprocessed 3D seismic reflection data illustrate the challenges related to their identification in a region dominated by faulting with small vertical offsets. Faults interpreted in the 3D seismic volume range from ∼300 to 1200 m wide and are in the same size range as faults that could have been the source of historical events up to Mw 2.7 in central Illinois. The array of monitoring sensors that was installed for the IBDP continues to collect data, as injection operates in IL-ICCS, the second injection well. CO2 injection rates for the IL-ICCS well are on average 1.7 times the rates injected in the IBDP well, but a significantly reduced rate of induced seismicity is observed. This article presents results of passive seismic monitoring for the duration of the project to date, integrating active and passive seismic data to develop a new interpretation of the subsurface structure at the Decatur site that explicitly identifies pathways for fluid flow into the basement leading to induced seismicity, and provides a geological explanation for the sharp reduction of induced seismicity during injection at higher rates into the second well. The use of seismic moment to estimate the length of seismogenic slip planes in the local subsurface suggests that faults large enough to produce felt seismicity are unlikely to be present at or near the Decatur site.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.