Abstract

With the aid of commercial FE code MSC.SuperForm, the structural steel tube continuous rolling process of a typical hollow tube specification 152.5×12.5mm is simulated based on Bao Steel 152.5 main pass sequence of 140mm 8-stand mandrel mill, and the distribution characteristics of stress/strain, outline lateral spread, temperature changes of workpiece in continuous rolling process and distribution of stress/strain, friction of workpiece in deformation zone are analyzed. Analysis results indicate that deformation of workpiece along the width of the groove, especially at the top and the bottom of the groove is highly inhomogeneous due to the unequal draught and the longitudinal stress of special position (the top and the bottom of the groove) of workpiece is always an alternate state, in a tensile-compressive-tensile manner, and has a distinct rule. In the first stand, outline dimension of workpiece gradually increases during reducing process and early stage of wall thickness reduction, but it gradually decreases during middle-late stage of wall thickness reduction and tends towards stability at last. It is inhomogeneous that distribution of unit compressive stress and longitudinal strain of workpiece in deformation zone, and contact stress and total equivalent plastic strain are maximal in inner surface of workpiece contacting with mandrel. Temperature difference between the outer and the inner surfaces of workpiece is obvious.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.