Abstract

Every nuclear power reactor, whether of fusion or fission, is essentially a thermal system that generates electricity. In this sense, there are several problems in relation to this heat transport. The model of plasma confinement by magnetic force, in the nuclear fusion (sterellator and tokamak), has only been 20 years and recently some success in the quality of the generated plasma has been achieved. However, due to the large amount of energy coming from the plasma, the choice of the material that will carry the generated energy is quite troublesome, due to the need to handle a very high temperature for the nuclear fission standards. Solutions are explored by the scientific community to transport the energy generated in the case of the primary circuit, after exceeding breakeven temperature and models that are based on the fission reactors of the fourth generation and those currently in operation, to search for solutions regarding the transport of heat generated for the generation of electric energy. Several materials such as pressurized water, sodium, helium and boron have been considered and studied to form the primary heat transfer circuit for the exchanger. A thorough analysis of these materials is necessary. This research looked at some of these materials for heat transport and power generation. Lithium and helium were found to be the probable materials for conveying heat and cooling in the blanket. The results show that research on blanket materials needs more attention. The quality of these materials needs to be improved by material research, with the ODS EUROFER alloy and other research to reduce material erosion by helium nano bubbles. Plasma quality needs to be improved to keep constant and free of impurities when using lithium in liquid form.

Highlights

  • In any system of electric power generation based on thermodynamics, it is used the transfer of thermal energy for its transformation into mechanical energy, basically to move turbines generating electric energy

  • Solutions are explored by the scientific community to transport the energy generated in the case of the primary circuit, after exceeding breakeven temperature and models that are based on the fission reactors of the fourth generation and those currently in operation, to search for solutions regarding the transport of heat generated for the generation of electric energy

  • This study aims to analyze the best means of transport of the energy produced in tokamak type nuclear fusion reactor for the generation of renewable electric energy

Read more

Summary

Introduction

In any system of electric power generation based on thermodynamics, it is used the transfer of thermal energy for its transformation into mechanical energy, basically to move turbines generating electric energy. In a hypothetical reactor of nuclear fusion, there is great difficulty in taking advantage of the heat generated

Methodology
Development
Conclusions

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.