Abstract
We study discrete-time dynamic games with effectively identical players who possess private states that evolve randomly. Players in these games are concerned with their undiscounted sums of period-wise payoffs in the finite-horizon case and discounted sums of stationary period-wise payoffs in the infinite-horizon case. In the general semi-anonymous case, the other players infuence a particular player's payoffs and state evolutions through the joint state-action distributions that they form. When dealing with large finite games, we find it profitable to exploit symmetric mixed equilibria of a reduced feedback type for the corresponding nonatomic games (NGs). These equilibria, when continuous in a certain probabilistic sense, can be used to achieve near-equilibrium performances when there are a large but finite number of players. We focus on the case where independently generated shocks drive random actions and state transitions. The NG equilibria we consider are random state-to-action maps that pay no attention to players' external environments. Yet, they can be adopted for a variety of real situations where the knowledge about the other players can be incomplete. Results concerning finite horizons also form the basis of a link between an NG's stationary equilibrium (SE) and good stationary profiles for large finite games.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have