Abstract
This study analyzes seasonal characteristics and long-term variations in aerosol optical parameters in Hong Kong from 2006 to 2021 using AERONET data and satellite-based observations based on the extreme-point symmetric mode decomposition (ESMD) model. The dominant aerosol types in Hong Kong are mixed aerosols and urban/industrial aerosols with fine-mode sizes, and slightly absorbing or non-absorbing properties. Aerosol optical depth (AOD), Angstrom exponent (AE) and single scattering albedo (SSA) varied seasonally with a lower AOD but higher AE and SSA in summer, and elevated AOD but lower AE and SSA in spring and winter. The long-term variations show the year 2012 to be a turning point, with an upward trend in AOD and AE before 2012 and then downwards after 2012. However, for SSA, a rising trend was exhibited in both pre- and post-2012 periods, but with a larger gradient in the first period. The ESMD analysis shows shorter-term, non-linear fluctuations in aerosol optical parameters, with alternating increasing and declining trends. The examination of the relationships between AOD and meteorological factors based on the extreme gradient boosting (XGBoost) method shows that the effects of weather conditions on AOD are complex and non-monotonic. A lower relative humidity, higher wind speed in southwest directions and lower temperature are beneficial to the abatement of aerosol loads in Hong Kong. In conclusion, the findings of this study enhance the understanding of aerosol properties and the interactions between aerosol loading and meteorological factors.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have