Abstract
Liquid air energy storage (LAES) is one of the most promising technologies for power generation and storage, enabling power generation during peak hours. This article presents the results of a study of a new type of LAES, taking into account thermal and electrical loads. The following three variants of the scheme are being considered: with single-stage air compression and the use of compression heat for regasification (Case 1); with single-stage compression and the organic Rankine cycle (Case 2); and with three-stage air compression/expansion and the organic Rankine cycle (Case 3). To analyze the proposed schemes, the Aspen HYSYS v.12 software package was used to compile models of the studied cycles. The analysis shows that round-trip efficiency (RTE) can be as high as 54%. The cost of 1 kg of liquid air is USD 7–8. Moreover, it is shown that the generation of electrical energy largely depends on the operation of the expander plant, followed by the organic Rankine cycle (ORC).
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have