Abstract

This paper discusses the effectiveness of the lifetime control technology in high-voltage insulated gate bipolar transistors (IGBTs) by using both numerical simulations and a two-dimensional on-state analytical model specifically developed for IGBTs with local lifetime killing. A comprehensive study of the static and dynamic performance of IGBTs using lifetime control technology in comparison with IGBTs featuring reduced anode injection efficiency structures is made. We show for the first time that IGBTs with low anode injection efficiency have similar or better on-state/switching trade-off when compared to equivalent IGBTs using lifetime control technology. We also show that both the local lifetime control and the low anode injection efficiency techniques are superior to full irradiation. The low anode injection efficiency is particularly better than the local lifetime control technique when applied to punch-though IGBTs while no difference between the two is found in non-punch-though IGBTs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call