Abstract

Over the past several decades, subsidence has emerged as a significant issue affecting urban, coastal, and mining areas worldwide. This phenomenon has been exacerbated by a decrease in groundwater resources, which has become a major problem on a global scale. Insufficient availability of surface water has led to excessive exploitation of the earth's groundwater system through unplanned processes. As a result, serious problems have arisen, including economic challenges, hazardous activities, and damage to the Earth's surface. One of the most significant and impactful consequences of excessive groundwater extraction is land subsidence. During a comprehensive literature review focusing on land displacement, 40 research papers were analyzed and discussed. These studies explored various techniques employed to monitor subsidence, such as synthetic aperture radar (SAR), interferometry synthetic aperture radar (InSAR), persistent scatterer interferometry synthetic aperture radar (PS-InSAR), and differential synthetic aperture radar (D-InSAR). Researchers have consistently found a strong correlation between the over extraction of underground fluids, such as water, oil, and gas, and land subsidence. One prominent cause of land subsidence identified by researchers is the over extraction of underground fluids. When excessive amounts of water, oil, or gas are extracted from underground reservoirs, the resulting voids and reduced pressure cause the overlying land to sink and compact. This process can have severe consequences for human settlements, infrastructure, and ecosystems in affected areas. The depletion of groundwater reserves, in particular, has become a pressing concern because of its vital role in supporting agricultural, industrial, and domestic water needs.Furthermore, the underground construction of tunnels has also been identified as a significant contributor to land subsidence. The excavation of tunnels creates voids and alters the natural balance of underground structures, leading to ground settlement and subsidence. This issue is particularly relevant in urban areas where extensive tunneling projects are undertaken to facilitate transportation, utilities, and infrastructure development. To monitor and assess land subsidence, various methods and processes are employed. SAR, InSAR, PS-InSAR, and D-InSAR techniques are valuable tools in this regard. SAR uses satellite-based radar systems to capture high-resolution images of the Earth's surface, enabling the detection of subtle changes over time. In contrast, InSAR employs two or more radar images to measure ground deformation by analyzing interference patterns. PS-InSAR focuses on persistent scatterers, which are specific targets that exhibit stable radar reflections over time, providing precise measurements of subsidence. D-InSAR combines two radar images acquired at different times to accurately calculate differential ground movements. By using advanced monitoring methods, scientists can assess the extent of subsidence and develop strategies to mitigate its negative impacts. It is crucial to adopt sustainable practices and ensure careful management of groundwater resources to effectively address this pressing issue.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call