Abstract

The lackadaisical quantum walk is a quantum analogue of the lazy random walk obtained by adding a self-loop to each vertex in the graph. We analytically prove that lackadaisical quantum walks can find a unique marked vertex on any regular locally arc-transitive graph with constant success probability quadratically faster than the hitting time. This result proves several speculations and numerical findings in previous work, including the conjectures that the lackadaisical quantum walk finds a unique marked vertex with constant success probability on the torus, cycle, Johnson graphs, and other classes of vertex-transitive graphs. Our proof establishes and uses a relationship between lackadaisical quantum walks and quantum interpolated walks for any regular locally arc-transitive graph.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.