Abstract

Nanofluids have analysis of wide applications of energy technologies in recent times as the thermal amplification of several manufacturing industries. A mathematical model is developed to stimulate electrokinetic transfer through peristaltic pumping of couple-stress micropolar nanofluids in a microchannel. The effects of Joule heating and chemical reaction have been considered. The remarkable properties of nanofluid are demonstrated by thermophoresis and Brownian motion characteristics. Thermophoresis has relevance in mass transport processes in many higher temperature gradient operating systems. The highly non-linear partial differential equations into ordinary differential equations by using appropriate similarities transformations. The graphical estimates are presented for the axial velocity, spin velocity, temperature of nano fluid, concentration and pumping characteristics. The outcomes of this study reveal the activation of Joule heating and chemical reaction effects in electroosmosis peristaltic transport of couple-stress, micropolar and nanofluids. This model is applicable to the study of chemical fraternization/separation procedures and bio microfluidics devices for the resolution of diagnosis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.