Abstract

Integrating Internet of Things (IoT) technology inside the cold supply chain can enhance transparency, efficiency, and quality, optimize operating procedures, and increase productivity. The integration of the IoT in this complicated setting is hindered by specific barriers that require thorough examination. Prominent barriers to IoT implementation in a cold supply chain, which is the main objective, are identified using a two-stage model. After reviewing the available literature on IoT implementation, 13 barriers were identified. The survey data were cross-validated for quality, and Cronbach's alpha test was employed to ensure validity. This study applies the interpretative structural modeling technique in the first phase to identify the main barriers. Among these barriers, "regulatory compliance" and "cold chain networks" are the key drivers of IoT adoption strategies. MICMAC's driving and dependence power element categorization helps evaluate barrier interactions. In the second phase of this study, a decision-making trial and evaluation laboratory methodology was employed to identify causal relationships between barriers and evaluate them according to their relative importance. Each cause is a potential drive, and if its efficiency can be enhanced, the system benefits as a whole. The findings provide industry stakeholders, governments, and organizations with significant drivers of IoT adoption to overcome these barriers and optimize the utilization of IoT technology to improve the effectiveness and reliability of the cold supply chain.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call