Abstract

We analyze the dynamics of modulation instability in optical fiber (or any other nonlinear Schrödinger equation system) using the machine-learning technique of data-driven dominant balance. We aim to automate the identification of which particular physical processes drive propagation in different regimes, a task usually performed using intuition and comparison with asymptotic limits. We first apply the method to interpret known analytic results describing Akhmediev breather, Kuznetsov-Ma, and Peregrine soliton (rogue wave) structures, and show how we can automatically distinguish regions of dominant nonlinear propagation from regions where nonlinearity and dispersion combine to drive the observed spatio-temporal localization. Using numerical simulations, we then apply the technique to the more complex case of noise-driven spontaneous modulation instability, and show that we can readily isolate different regimes of dominant physical interactions, even within the dynamics of chaotic propagation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call