Abstract

We have developed a novel dual mode immunoassay platform that combines the advantages of real-time, label free measurement of surface plasmon resonance (SPR) and the highly directional surface plasmon-coupled emission (SPCE) using a gold grating-based sensor chip. Since only fluorophore-labeled analyte molecules that are close to the metal surface of the sensor chip will couple to the surface plasmon, SPCE detection is highly surface-specific leading to background suppression and increased sensitivity. Theoretical calculations were done to find SPR and SPCE angles for a sensor chip optimized for Alexa Fluor 647. We have confirmed the SPR and SPCE responses on the dual mode sensor chip using Alexa Fluor 647 labeled anti-mouse IgG. Signal fluctuation of the dual mode sensor chip reader was below 1.2% and 0.8% for SPR and SPCE, respectively. The SPR response in this configuration showed a minimum detection level of 1 μg ml(-1), and the SPCE response showed a minimum detection level of 1 ng ml(-1) for the same sample. A range of human IgG concentrations in human serum was also analyzed with the dual mode sensor chip. The SPCE measurement is more sensitive than the SPR real-time measurement, and substantially extends the dynamic range of the assay platform, as well as enabling independent measurements of co-localized analytes on the same sensor chip region of interest. Since this assay platform is capable of measuring more than 1000 spatially encoded regions of interest on a 1 cm(2) sensor chip, it has the potential for high-content analyses of biological samples with both research and clinical applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.