Abstract

To investigate immediate changes in water-soluble metabolites of ocular tissue in alkali-burned eyes by using high-resolution 1H-NMR spectroscopy. Adult New Zealand rabbit eyes were burned with 1 M NaOH for 1 min. Normal eyes were used as control. Samples from aqueous humor and perchloric acid extracts of the cornea and lens were analyzed on a NMR spectrometer operating at 500 MHz for protons. Metabolites were quantified by comparing peak area with an added internal standard, TSP (3'-trimethylsilylpropinate-2,2,3,3-d4). Alkali burn of corneal surface causes immediate changes in concentration of many water-soluble metabolites in the anterior segment. Even as far away as the lens a significant increase in lactate was found. Cornea showed a significant increase in glucose and a significant decrease in hypo-taurine concentration. Most changes were observed in aqueous humor, with significant increases in succinate, creatine, scyllo- and myo-inositol and a significant decrease in citrate concentration. Furthermore, a small decrease in ascorbate concentration in aqueous humor was observed. The present study provides a valuable contribution to the knowledge of metabolic alterations in alkali-burned eyes. It shows that 1H-NMR spectroscopy is well suited for simultaneous qualitative and quantitative analysis of changes of metabolite concentrations in damaged tissues. This can help us to better evaluate and understand the biological alterations due to alkali burn.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.