Abstract

An elastoplastic analysis of hydrostatic extrusion is made using the finite element method. The effect of frictional coefficient on the spread of plastic zone, the pressure-displacement curve, and the stress and the strain distributions are studied for the non-steady state in plane-strain and axisymmetric extrusions. Comparisons of results between the finite element solution and slip-line solution and between plane-strain and axisymmetric extrusions are presented. Tensile stresses on the surface of the extruded part behind the die are found to exist. It is also found that the die pressure is high near the die entry and exit and that the surface of the billet in front of the die entry tends to contract.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.