Abstract
The evaluation of groundwater environmental quality and the identification of recharge sources are very important for groundwater utilization. In this study, hydrochemistry and isotope analysis methods are used to investigate the recharge sources and hydrochemical processes of groundwater in Zhanjiang City. The results show that all samples of groundwater were drawn on the left of the global meteoric water line (GMWL: δD = 8δ18O + 10) and local meteorological water lines (LMWL1: δD = 8.17δ18O + 11.74 and LMWL2: δD = 7.50δ18O + 6.18), indicating that the groundwater was mainly recharged by meteoric precipitation and influenced by the effect of evaporation. In the middle and deep confined aquifers, the isotope data depleted with the depth, indicating that there is a relatively weak hydraulic connection between them. In addition, compared with unconfined groundwater, the isotope data of confined groundwater showed relative depletion, indicating that the confined aquifer may be partially recharged from other confined aquifers. The main chemical types in the groundwater were Na*Ca-HCO3. There are three major natural hydrochemical processes controlling the source of groundwater ions: silicate weathering, carbonate dissolution, and the cation exchange reaction. In addition, the differences in physical and chemical properties between unconfined groundwater and confined groundwater are significant. Due to the differences in anthropogenic activities and land-use types, the nitrate of the unconfined groundwater exceeds the groundwater standards. Due to the geological background of Zhanjiang City, iron and manganese exceed the third standard of groundwater in confined groundwater. Due to groundwater exploitation, TDS levels in confined groundwater have been increasing. Closed groundwater extraction is not sustainable, and it is depleting ancient water reserves. This study highlights the effectiveness of hydrochemistry and isotope analysis methods for identifying the recharge area and recharge mode of groundwater, andit is significant for fully understanding groundwater hydrochemistry and scientifically managing and protecting groundwater.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have