Abstract
This paper presents a numerical study of high birefringence induced by four types (Type 1–4) of different sizes of elliptical air holes in photonic crystal fibers (PCFs). The numerical simulation is carried out by using the finite element method. The statistical correlations between the birefringence and the various parameters are obtained. Based on our results, the birefringence is found to be largely dependent on the variation of the normalized frequency, size ratio, effective area of the circular and elliptical air holes, and the ring number of cladding. Two of our suggested structures, Type 1 and Type 3, can considerably enhance the birefringence in PCFs leading to values as high as7.697×10−3and8.002×10−3, respectively, which are much higher than that obtained by a conventional step-index fiber.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Advances in Nonlinear Optics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.