Abstract
Abstract A diluted water plug can form inside the primary coolant circuit if the coolant flow has stopped at least temporarily. The source of the clean water can be external or the fresh water can build up internally during boiling/condensing heat transfer mode, which can occur if the primary coolant inventory has decreased enough during an accident. If the flow restarts in the stagnant primary loop, the diluted water plug can enter the reactor core. During outages after the fresh fuel has been loaded and the temperature of the coolant is low, the dilution potential is the highest because the critical boron concentration is at the maximum. This paper examines the behaviour of the core as clean or diluted water plugs of different sizes enter the core during outages. The analysis were performed with the APROS 3D nodal core model of Loviisa VVER-440, which contains an own flow channel and 10 axial nodes for each fuel assembly. The wide-range cross section data was calculated with CASMO-4E. According to the results, the core can withstand even large pure water plugs without fuel failures on natural circulation. The analyses emphasize the importance of the simulation of the backflows inside the core when the reactor is on natural circulation.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have