Abstract

In this paper, second order velocity slip and temperature jump boundary conditions are used to solve the momentum and energy equations along with isoflux thermal boundary condition at the surface of the micropipe. The flow is assumed to be hydrodynamically and thermally fully developed inside the micropipe and viscous dissipa- tion is included in the analysis. The solution yields closed form expressions for the temperature field and Nusselt number (Nu) as a function of various modeling parameters, namely, Knudsen number and Brinkman number (Br). For the given values of Br, the maximum difference of Nu between continuum flow with first order slip model and continuum and, second order slip model is found to be 35.67 and 34.62 %, respectively. Present solution exhibits good agreement with the other theoretical models.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call