Abstract

In this paper single area fuel cell based load frequency control (LFC) system is examined. This system has a battery energy storage system (BESS) and flywheel energy storage system (FESS). Due to communication components, communication time delay is often occurred in the LFC system in practice. For this reason, this delay is added to system model. In order to improve the system performances, fractional order proportional-integral-derivative PI <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">λ</sup> D <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">µ</sup> ) controller is used and it is tuned via recently developed Equilibrium Optimizer (EO). The present study, three different analyzes are performed. First, effectiveness of proposed controller and method are compared with the literature. Second, impact of variations of communication time delays are analyzed. Finally, the impact of changing of system time constants are examined. Obtained results are shown that system performances have been improved. In addition, the effects of variations in time delay and time constants on the system are shown comparatively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.