Abstract
This article investigates the frictional behavior of epoxy-based cathodic electrodeposited coatings against metallic and ceramic balls. Reciprocal linear sliding tests are conducted with a ball-on-flat configuration; balls are made of stainless steel (SUS316L), carbon steel (AISI 1010), bearing steel (AISI 52100), silicon nitride (Si3N4), and zirconia (ZrO2). Meanwhile, the substrate is made of cold-rolled high-strength steel. The kinetic friction coefficient is determined under the conditions similar to those found with automotive seat sliding rails. Friction coefficient evolutions of a cathodic electrodeposition coating against various ball types are directly compared. Experimental results show that an electrodeposited coating on zirconia balls offers the longest endurance life among the selected balls in terms of the friction coefficient. The growth rate of the friction coefficient is expressed as a power-law function of the friction coefficient. It is identified that the power-law exponent is associated with ball hardness. The exponent increases with the increase of ball hardness.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have