Abstract

This study employed a combination of principal component analysis (PCA) and gas chromatography-ion mobility spectrometry (GC-IMS) to examine the distinctive taste mixtures produced by Chinese spicy cabbage (CSC) fermented at varying temperatures. As the fermentation progressed, the pH gradually decreased and stabilized after the 11 days of fermentation, and the total content of organic acids and short-chain fatty acids increased. A total of 49 volatile mixtures were detected during CSC fermentation and storage for 21 days. These included 7 aldehydes, 6 alcohols, 7 esters, 6 ketones, 5 pyrazines, 4 sulfides, 4 phenols, 2 ethers, 2 olefins, and 1 acid. With time, the content of most volatile flavor substances decreased. PCA of the signal intensities of the volatile chemicals in the samples showed significant differences in the flavor of CSC fermented at different temperatures; consequently, the samples fermented at different temperatures were effectively separated in relatively independent regions of CSC. Therefore, low-temperature fermentation and storage at 4 °C were more suitable for CSC. Based on the identified volatile chemicals, HS-GC-IMS and PCA could effectively construct the flavour fingerprints of CSC samples. This study provided a theoretical basis for improving the fermentation quality of CSC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.