Abstract

This paper proposes several axiomatic refined theories for the linear static analysis of beams made of functionally graded materials. A bi-directional variation upon the cross-section is accounted for. Via a unified formulation, a generic N-order approximation is assumed for the displacement unknown variables over the beam cross-section. The governing differential equations and the boundary conditions are derived in terms of a fundamental nucleo that does not depend upon the approximation order. A Navier type, closed form solution is adopted. Beams undergo bending and torsional loadings. Deep beams are investigated. Comparisons with three-dimensional finite element models are given. The numerical investigation shows that the proposed unified formulation yields the complete three-dimensional displacement and stress fields as long as the appropriate approximation order is considered.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.