Abstract
ABSTRACTTo develop higher density FRAM requires reducing cell size. Therefore, the size effects resulting from device processing and the material's physical properties must be measured. Therefore, analyzing the electric characteristics of a single bit cell capacitor has become important. Two known characteristics of ferroelectric material are that the Vc increases at low temperatures, and the Pr falls at high temperatures. To further evaluate the impact of temperature on ferroelectrics, we constructed a new evaluation system based on a scanning probe microscope, that can measure the electric characteristics of a single bit cell capacitor. This system can be used in the temperature range from −120 degrees to 300 degrees C. We accomplished this by circulating liquid nitrogen around a SPM stage and by using an electrical heater. We measured the electrical properties of ferroelectric microcapacitors by using a sample with IrOx/PZT/Pt structure. Our measurements revealed that 2Pr really increases at low temperatures, and Pr decreases at high temperatures. That is, we have shown that Vc increases 30% at low temperatures and Pr decreases 10% also in an actual FRAM single bit cell capacitor.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have