Abstract
Illicit fentanyl and fentanyl analogs are a growing concern in the United States as opioid related deaths rise. Given that fentanyl analogs are readily obtained by modifying the structure of fentanyl, illicit fentanyl analogs appearing on the black market often contain similar structures, making analogue differentiation and identification difficult. Thus, obtaining both precursor and product ion data during analysis is becoming increasingly valuable in fentanyl analog characterization. In this paper, we provide GC column retention time, precursor, and product ion mass spectrum data for 74 fentanyl analogs that were analyzed using atmospheric pressure chemical ionization-gas chromatography-mass spectrometry (APCI-GC-MS) utilizing a triple quadrupole mass analyzer. During analysis, precursor ions underwent collision induced dissociation (CID) by increasing the collision energy (10, 20, 30, 40, and 50 V) throughout a single run. Data reveal that APCI readily produces product ions of the piperidine and N-alkyl chain but rarely provides data on the acyl group. Furthermore, fentanyl analogs with greater substitution at the N-alkyl chain demonstrate a greater preference for dissociation at the N-αC and αC-βC bond, while greater substitution at the amide group leads to fragmentation at the N-C4 bond.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have