Abstract

Heart failure is associated with shifts in substrate preferences and energy insufficiency. Although cardiac metabolism has been explored at the organ level, the metabolic changes at the individual cell level remain unclear. This study employed single-cell ribonucleic acid (RNA) sequencing to investigate the cell-type-specific characteristics of gene expression related to fatty acid metabolism. Single-cell RNA sequencing data from fetal hearts were processed to analyze gene expression patterns related to fatty acid metabolism. Immunofluorescence staining and Western blotting techniques were employed to validate the expression of specific proteins. Additionally, calcium recording and contractility measurements were performed to assess the functional implications of fatty acid metabolism in cardiomyocytes. Based on single-cell RNA sequencing data analysis, we found that a decrease in overall energy requirements underlies the downregulation of fatty acid oxidation-related genes in the later period of heart maturation and the compensatory increase of fatty acid metabolism in individual cardiomyocytes during heart failure. Furthermore, we found that solute carrier family 27 member 6 (SLC27A6), a fatty acid transport protein, is involved in cardiac maturation. SLC27A6 knockdown in human induced pluripotent stem cell-derived cardiomyocytes resulted in an immature cardiomyocyte transcriptional profile, abnormal morphology, impaired Ca2+ handling activity, and contractility. Overall, our study offers a novel perspective for exploring cardiac fatty acid metabolism in fetal and failing hearts along with new insights into the cellular mechanism underlying fatty acid metabolic alterations in individual cardiac cells. It thus facilitates further exploration of cardiac physiology and pathology.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call