Abstract

Detecting <span>facial emotion expression is a classic research problem in image processing. Face expression detection can be used to help human users monitor their stress levels. Perceiving an individual's failure to communicate specific looks might help analyze early psychological disorders. several issues like lighting changes, rotations, occlusions, and accessories persist. These are not simply traditional image processing issues, yet additionally, action units that make gathering activity of facial acknowledgment troublesome look information, and order of the demeanor. In this study, we use Xception taking into account Xception and convolution neural network (CNN), which is easy to focus on incredible parts like the face, and visual geometric group (VGG-19) used to extract the facial feature using the OpenCV framework classifying the image into any of the basic facial emotions. NVIDIA Jetson Nano has a high video handling outline rate. Accomplishing preferable precision over the recently evolved models on software. The average accuracies for standard data set CK+,” on NVIDIA Jetson Nano, the accuracy rate is 97.1% in the Xception model in the convolutional neural network, 98.4% in VGG-19, and real-time environment accuracy using OpenCV, accuracy rate is 95.6%.</span>

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.