Abstract
Ethylene favors carposporogenesis in the red seaweed Grateloupia imbricata. Analyses of cystocarp development invitro in thalli treated with ethylene suggest an interconnection between polyamine and ethylene biosynthesis pathways. Yet, little is known about molecular mechanisms underlying carposporogenesis. Here, we used droplet digital PCR to analyze genes encoding enzymes related to polyamine (Spermidine [Spd] synthase) and ethylene (ACC synthase) synthesis; a pivotal compound of both pathways (S-adenosyl methionine synthase, SAMS); the gene that encodes amine oxidase, which is involved in polyamine degradation, and a candidate gene involved in seaweed reproduction (ornithine decarboxylase, ODC). In addition, we analyzed genes encoding proteins related to stress and reactive oxygen species, ascorbate peroxidase (APX), cytochrome P450 and WD 40. We characterized gene expression in fertilized and fertile thalli from G.imbricata that were exposed to ethylene for 15min at two time points after treatment (1 and 7d). The differential gene expression of SAMS, Spd synthase, ACC synthase, and cytochrome P450 was related to disclosure and development of cystocarps in fertilized thalli that transitioned from having no visible cystocarps at 1d to developing cystocarps at 7d. Likewise, cytochrome P450 was associated with cystocarp disclosure and maturation. In addition, amine oxidase and APX were involved in fine-tuning polyamine and reactive oxygen species during carposporogenesis, respectively, whereas WD 40 did so in relation to ethylene signaling. Expression of the candidate gene ODC was increased when cystocarps were not visible (fertilized thalli, 1d), as previously described. This analysis suggests developmental stage-specific roles for these genes during carposporogenesis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.