Abstract

A dynamic analysis of future energy and carbon flows (2000–2050) is performed on the aggregated residential building stock in Norway. The basis for the analysis is a dynamic material flow analysis of floor areas and the main building materials. By adding energy intensity assumptions for space heating, water heating, domestic electrical appliances and embodied energy in construction materials, the future corresponding delivered energy demand is calculated. This forms the basis for life cycle estimation of the future direct and indirect greenhouse gas (GHG) emissions. The predicted demand for delivered energy in 2025 will increase by 24.0% and 12.5% above those for 2000 and 2010, respectively, and then remain stable towards 2050. Energy savings per unit of floor area are counterbalanced by growth in the building stock. The very high influence of energy technology assumptions within the electricity generation market is demonstrated, along with the large differences between using attributional and consequential life cycle assessment principles in the calculation of future emissions. Future electricity demand met by marginal power generation technologies in the European market will yield substantially higher GHG emissions. The simulations demonstrate the policy, strategy, and practical challenges in achieving significant long-term energy and GHG emission reductions from the residential building stock in a country with a rapidly growing population. Une analyse dynamique des flux futurs d'énergie et de carbone (2000-2050) est réalisée en Norvège sur l'ensemble du parc de logements (immeubles résidentiels). La base de l'analyse consiste en une analyse dynamique des flux de matières des surfaces au sol et des principaux matériaux de construction. En ajoutant des hypothèses relatives à l'intensité énergétique concernant le chauffage d'ambiance, la production d'eau chaude, les appareils électroménagers et l'énergie intrinsèque des matériaux de construction, la demande future correspondante en énergie livrée est calculée. Ceci constitue la base pour l'estimation du cycle de vie des futures émissions directes et indirectes de gaz à effet de serre (GES). La demande prévue d'énergie livrée en 2025 sera en augmentation de 24,0% et de 12,5%, respectivement, par rapport à la demande de 2000 et à celle de 2010, puis demeurera stable vers 2050. Les économies d'énergie par unité de surface au sol sont contrebalancées par la croissance du parc bâti. Démonstration est faite de la très forte influence des hypothèses relatives aux technologies énergétiques dans le marché de la production d'électricité, ainsi que des grandes différences existant entre le fait d'utiliser, pour le calcul des émissions futures, les principes d'une analyse attributionnelle et ceux d'une analyse conséquentielle du cycle de vie. La demande future d'électricité satisfaite par les technologies marginales de production d'électricité dans le marché européen générera des émissions de gaz à effet de serre sensiblement plus élevées. Les simulations montrent les défis qui se posent en termes de politique, de stratégie et sur le plan pratique, pour réaliser des réductions à long terme importantes de la consommation énergétique et des émissions de GES provenant du parc bâti résidentiel. secteur du bâtiment parc bâti bâtiments réduction du CO2 consommation énergétique émissions de gaz à effet de serre analyse des flux de matières atténuation Norvège

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call