Abstract

We analyzed multi quantum well light emitting diodes, consisting of ten alternating GeSn/Ge-layers, were grown by molecular beam epitaxy on Si. The Ge barriers were 10 nm thick and the GeSn wells were grown with 7% Sn and thicknesses between 6 and 12 nm. Despite the high threading dislocation density of 109 to 1010 cm−2 the electroluminescence spectra measured at 300 and 80 K yield a broad and intensive luminescence band. Deconvolution revealed three major lines produced by the GeSn wells that can be interpreted in terms of quantum confinement. Biaxial compressive strain causes a splitting of light and heavy holes in the GeSn wells. We interpret the three lines to represent two direct lines, formed by transitions with the light and heavy hole band, respectively, andan indirect line.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.