Abstract

The linear and nonlinear behaviour of intersubband transitions of cubic GaN/AlN multi quantum well (QW) structures in the IR spectral region is investigated. In this study photoluminescence, IR absorption as well as pump-probe measurements are done. Two cubic GaN/AlN multi quantum wells with Si content of NSi ~1019cm−3 in the cubic GaN quantum wells were grown on 3C-SiC (001) substrate by radio-frequency plasma-assisted molecular beam epitaxy. A broad IR absorption with a FWHM of 370meV was found with a maximum at 0.7eV, corresponding to the intersubband transition of the multi quantum wells. The nonlinear optical measurement reveals a clear change of transmission for a pump pulse with an angle of incidence of 65°. Furthermore, transmission electron microscopy measurements are used to determine the real layer thicknesses. These thickness values are exploited in the calculation with the Schrödinger-Poisson solver nextnano³. The simulated transition energies agree very well with the experimental data for the photoluminescence and the absorption measurement.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call