Abstract

As is well known, almost all the machines need to start and brake. In this process, the lubrication state of their parts changes instantaneously. In this paper, an isothermal study for the line contact elastohydrodynamic lubrication (EHL), which is in rapid braking process and under a constant load, is carried out by using a simplified multigrid method. Numerical results indicate that the oil film thickness decreases and the oil film pressure increases with the decrease of the speed during the process of rapid braking. The oil film shrinks quickly and the oil entrapment occurs when the speed reduces to a certain range. Simultaneously, the distribution of oil film pressure tends to the central lubrication area. The size of the oil entrapment area and the changes of the oil film pressure are closely related to the braking time and the initial speed, which reflects the transient effects of the lubricating oil film.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call