Abstract

Referred the vehicle-track coupling dynamics theory [1] and the vertical dynamic analysis models of Bridge-Subgrade transition developed by Zhai [2] ,Wang [3] and others [4]. This article takes account of the interaction between different structural layers in the subgrade system further by using the dynamic ballastless track model and finally establishes a space dynamic numerical model of the vehicle-track-subgrade coupled system. The dynamic response of the coupled system is analyzed when the speed of the train is 350km/h and the transition is filled with graded broken stones mixed with cement of 3%. Results show that the setting forms of Bridge-Subgrade transition have little effect on the dynamic responses, so designers can choose it on account of the practical situation. Due to the location away from abutment about 5m has greater deformation; the stiffness within 5m should be designed alone. Based on the study from vehicle-track dynamics, we suggest that the maximum allowable track deflection angle is 0.9‰ and K30190Mpa within 5m behind the abutment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.