Abstract

This paper investigates the effects of dynamic due-date assignment models (DDDAMs), routing flexibility levels (RFLs), sequencing flexibility levels (SFLs) and part sequencing rules (PSRs) on the performance of a flexible manufacturing system (FMS) for the situation wherein part types to be produced in the system arrive continuously in a random manner. The existing DDDAMs considered are dynamic processing plus waiting time and dynamic total work content. A new model known as dynamically estimated flow allowance (DEFA) has also been developed and investigated. The routing flexibility of the system and the sequencing flexibility of parts are both set at three levels. A discrete-event simulation model of the FMS is used as a test-bed for experimentation. The performance measures evaluated are mean flow time, mean tardiness, percentage of tardy parts and mean flow allowance. The statistical analysis of the simulation results reveals that there are significant interactions among DDDAMs, RFLs, SFLs and PSRs for all the performance measures. The proposed DEFA model provides the minimum percentage of tardy parts in all the experiments. Regression-based metamodels have been developed using the simulation results. The metamodels are found to provide a good prediction of the performance of the FMS within the domain of their definition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.