Abstract
The production of cloned animals is an inefficient process because of early or late embryonic losses. This study focused on the DNA fragmentation that occurs during embryonic development. The occurrence of DNA fragmentation was examined in bovine embryos produced by in vitro fertilization (IVF) and somatic cell nuclear transfer (NT) using the terminal deoxynucleotidyl transferase (TdT) nick-end labelling (TUNEL). IVF and NT embryos at the two-cell to blastocyst stage were stained by TUNEL for the analysis of DNA-fragmented nuclei and with propidium iodide for determination of the total number of cells. DNA fragmentation was first detected in NT embryos at the four-cell stage, but in IVF embryos at the six- to eight-cell stage. The percentage of embryos with at least one DNA-fragmented nucleus increased with the advance of the developmental stage of embryos in both IVF and NT groups. The DNA-fragmented nucleus index in NT embryos that developed beyond the four-cell stage was significantly higher (P<0.01) than that of IVF embryos at the same stage. In the both IVF and NT groups, TUNEL-labelled cells were detected in almost all blastocysts and were mainly observed in presumptive inner cell mass (ICM) cells of embryos. The DNA-fragmented nucleus index was negatively correlated with the total number of cells in NT blastocysts, but this relationship was not observed in IVF blastocysts. These results suggest that the high occurrence of DNA fragmentation observed in NT embryos may be related to early embryonic loss after transfer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.