Abstract
Nonhomologous end joining (NHEJ) is the primary mechanism by which mammalian cells repair DNA double-strand breaks (DSBs). Proteins known to play a role in NHEJ include the DNA-dependent protein kinase catalytic subunit (DNA-PKcs), the Ku 70/Ku 80 heterodimer (Ku), XRCC4, and DNA ligase IV. One of the main roles of the DNA-PKcs-Ku complex is to bring the ends of the DSB together in a process termed synapsis, prior to end joining. Synapsis results in the autophosphorylation of DNA-PKcs, which is required to make the DNA ends available for ligation. Here, we describe a novel assay using two-photon fluorescence cross-correlation spectroscopy that allows for the analysis of DNA synapsis and end joining in solution using purified proteins. We demonstrate that although autophosphorylation-defective DNA-PKcs does not support DNA ligase-mediated DNA end joining, like wild-type (WT) DNA-PKcs, it is capable of Ku-dependent DNA synapsis in solution. Moreover, we show that, in the presence of Ku, both WT DNA-PKcs and autophosphorylation-defective DNA-PKcs promote the formation of multiple, large multi-DNA complexes in solution, suggesting that, rather than align two opposing DNA ends, multiple DNA-PK molecules may serve to bring multiple DNA ends into the NHEJ complex.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have