Abstract

In this work, a xenon-filled quartz coaxial dielectric barrier discharge (DBD) tube (ID 6 mm, OD 12 mm) at 400-mbar pressure has been studied at different operating conditions. High-frequency sinusoidal and unipolar pulse-like voltages are applied at the discharge electrodes for the generation of micro-discharge plasma. Visual images of the discharge and the electrical waveform confirm the diffused-type discharge. The mechanism that is involved in the ignition, development and extinction of DBDs is quantitatively explained by dynamic processes in the discharge. An equivalent electrical model representing the DBD phenomenon has also been used to validate the characteristic discharge parameters. The relative intensity analysis of the Xe continuum peak at wavelength 172 nm in the optical emission spectra of the vacuum ultraviolet region has been carried out for different operating conditions. Approximately three times increment in the radiation is observed in pulse excitation over sinusoidal excitation. It infers that the pulsed excitation of DBD sources is advantageous for excimer light sources.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call