Abstract
The generation of homogeneous dielectric barrier discharge (DBD) in a 8-mm large-gap Ar at atmospheric pressure by employing a microsecond pulsed power supply excitation is presented. The electrical and optical characteristics of the homogeneous DBD are experimentally studied, and the comparison of the discharge characteristics with its sinusoidal counterpart and the improvement of the discharge stability using the water electrodes are also experimentally investigated. Results show that, as compared with filamentary-mode discharges with sinusoidal excitation, stable and homogeneous DBD with higher energy efficiency is shown to be generated using the pulsed excitation over a large voltage range, and the pulsed-excitation DBD can generate more total transferred charges per one voltage cycle with less consumed discharge power. The suppression of the instabilities by using water electrode is desirable for improving stability, and the critical voltage for generated homogeneous DBD can be improved with water electrode.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: IEEE Transactions on Plasma Science
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.