Abstract

We present the analysis of diffractive optical elements (DOEs) using a two-dimensional nonuniform finite-difference time- domain (FDTD) method. Because the feature sizes in a DOE profile are in general irregular, their analysis using a conventional formulation of the FDTD, i.e., a uniform orthogonal grid, typically requires a high spatial sampling. This in turn raises the computational time and memory requirements for analysis. However, by using a nonuniform grid configuration one can more accurately represent the computation boundary of the DOE, and consequently reduce computational costs. To this end we apply our method to the analysis of both multilevel and subwavelength DOEs to illustrate its utility.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.