Abstract

Prokaryotic systems have been considered the most affordable and simplest hosts which are being employed to express recombinant proteins such as allergens; nevertheless, without appropriate signal peptide (SP), these systems cannot be used for secretory proteins. Recently, a lot of effort has been put into assessing the potential of gram-positive strains such as lactic acid bacteria for new applications in the production of heterologous proteins. Ama r 2 is a respiratory allergen from Amaranthus retroflexus, whose recombinant production in the probiotic host could be introduced as a specific and effective way to rapid diagnosis and immunotherapy of this allergy. Consequently, the production of this recombinant protein using the prokaryotic system, requires a suitable SP to protect disulfide bonds and to prevent misfolding. This study was designed to predict the best SPs for the expression of Ama r 2 protein in Lactococcus lactis as the host. In this study, 42 signal sequences were selected from SP databases and the most important features of them were evaluated. First, n, h and c regions of the SPs and their probabilities were investigated by signalP software version 4.1. Then, their physicochemical properties were evaluated by Portparam and SOLpro. Moreover, the secretion sorting and sub-cellular localization sites were evaluated by PRED-TAT and ProtcompB software programs. The results revealed that yjgB, entC2 (Entrotoxine type C-2), ent B (Entrotoxine type), blaZ (Beta lactamase), dex (number 21), blm (Beta lactamase 2), dex (Dextranase; number 20) and number 26 were introduced theatrically as the best SPs to express Ama r 2 in Lactococcus lactis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.